
Downloaded from http://ssudl.solent.ac.uk/2397/

Usage Guidelines

Please refer to usage guidelines at http://ssudl.solent.ac.uk/policies.html or alternatively contact ir.admin@solent.ac.uk.
Ultrasonic wave propagation in stereo-lithographical bone replicas

Haydar Aygün
Medical Physics, Post-Graduate Medical Institute, The University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom

Keith Attenborough
Department of Design, Development, Environment and Materials, The Open University, Milton Keynes MK7 6AA, United Kingdom

Walter Lauriks
Laboratorium voor Akoestiek en Thermische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Heverlee, Belgium

Christian M. Langton
Department of Medical Physics, Queensland University of Technology, 2 George Street, Brisbane QLD 4001, Australia

(Received 12 February 2010; revised 22 March 2010; accepted 26 March 2010)

Predictions of a modified anisotropic Biot–Allard theory are compared with measurements of pulses centered on 100 kHz and 1 MHz transmitted through water-saturated stereo-lithographical bone replicas. The replicas are 13 times larger than the original bone samples. Despite the expected effects of scattering, which is neglected in the theory, at 100 kHz the predicted and measured transmitted waveforms are similar. However, the magnitude of the leading negative edge of the waveform is overpredicted, and the trailing parts of the waveforms are not predicted well. At 1 MHz, although there are differences in amplitudes, the theory predicts that the transmitted waveform is almost a scaled version of that incident in conformity with the data.

© 2010 Acoustical Society of America. [DOI: 10.1121/1.3397581]

PACS number(s): 43.80.Cs, 43.80.Qf, 43.80.Vj [CCC] Pages: 3781–3789

I. INTRODUCTION

Understanding the propagation of acoustic waves through cancellous bone is an important pre-requisite to improving the prediction of fracture risk by ultrasound. Bone essentially has two types of structure, both having the same mineralized collagen composition. Cortical bone may generally be considered to be solid; cancellous bone consists of a complex open-celled porous network of rod- and plate-shaped elements termed trabeculae. The porosity of human cancellous bone ranges between 70% and 95%, the remaining volume being perfused with bone marrow. In the adult human vertebral body for example, both horizontal and vertical trabeculae range from 50–120 μm in thickness, and spaced at intervals of between 1200–5000 and 700–2000 μm, respectively (Thomsen et al., 2002).

Two mechanisms give rise to the structure of bone, modeling and remodeling. “Modeling” is the process primarily responsible for maintaining bones in their correct shape as they grow and respond to their biomechanical environment; it also controls the cortical thickness and marrow cavity diameter of bones as they age. “Remodeling” is mainly concerned with the continual replacing of old cancellous bone and occurs at discrete foci on the surface of the trabeculae (Frost et al., 2001). During remodeling, osteoclast cells create a resorption cavity that is subsequently filled with new collagen by osteoblast cells. In osteoporosis, there is a symptomatic negative imbalance in remodeling, thereby creating a bone loss, particularly at sites of predominantly cancellous bone such as the spine, hip, wrist, and heel; this ultimately leads to skeletal fragility and increased risk of fracture (Rosen, 2004).

The conventional method of assessing osteoporosis in the clinical environment is bone mineral density (BMD, g cm−2), an areal parameter describing the bone mineral content within a projected area. BMD is generally measured at sites most at risk of osteoporotic fracture, the spine, hip, and wrist. BMD is generally measured using the technique of dual energy X-ray absorptiometry (DXA) (Njeh and Shepherd, 2004). True volumetric bone density may be derived using quantitative computed tomography (QCT), utilizing a conventional CT scanner, a calibration phantom being scanned with the subject to convert Hounsfield numbers into g cm−3 (Lang, 2004). QCT is increasingly being used, particularly at the lumbar spine although there is a higher radiation dose compared to DXA. Although generally utilized as a research tool for the measurement of excised tissue samples, microCT provides a typical spatial resolution of 0.01 mm and hence replicates the true trabecular structure, compared to resolutions of approximately 1 mm for DXA, and slightly better than 1 mm for QCT. A technique that is gaining in-
Increasing interest is magnetic resonance (MR) imaging which essentially measures the water content of tissues. Bone does not therefore give an MR signal, although its presence may be inferred from a “negative” image (Pothuaud and Majumdar, 2004).

Quantitative ultrasound (QUS) generally involves measurements of the transmission of ultrasonic signals, either along a cortical bone surface or through a bone such as the heel and phalanx (Njeh et al., 1997). There are two fundamental measurement parameters, velocity (ms⁻¹) and attenuation (dB). Velocity is obtained by dividing the propagation distance by the corresponding transit time, with through-transmission measurements recorded at the calcaneus (heel) and phalanx, and surface-transmission recorded primarily at the tibia. This technique is only correct in the absence of dispersion. If dispersion is present (which is the case in poroelastic media), this technique gives wrong results (Haiat et al., 2006). Attenuation is generally expressed as broadband ultrasound attenuation (BUA, dB MHz⁻¹) at the calcaneus, describing the linear increase in attenuation with frequency between 200 and 600 kHz. It has been clinically demonstrated that velocity provides higher precision, expressed as CV%, whereas BUA exhibits higher dynamic range. It is generally accepted that of the QUS options, BUA is more accurate and reproducible than the other options (Attenborough, 1982). BUA is relatively independent of bone density and has a linear relationship with trabecular density (Langton et al., 1999). BUA has also been shown to be independent of age (Haire and Langton, 1999; Fellah et al., 2004; Sebäa et al., 2006). A modified Biot–Attenborough (MBA) model has also been proposed for acoustic wave propagation in a non-rigid porous medium with circular cylindrical pores starting from a formulation for a rigid-framed porous material (Roh et al., 2003; Attenborough 1982, 1983). The MBA has been used to predict the dependences of velocity and attenuation on frequency and porosity in bovine cancellous bone (Lee et al. 2003; Lee and Yoon 2006).

For geophysical applications (Carcione 1996), Biot theory has been further developed including semi-analytical approach that allows for transverse anisotropy in the frame elastic moduli, tortuosity and permeability. The angular dependences of phase velocities for the fast and the slow waves in cancellous bone have been predicted (Hughes et al. 1999), along with the anisotropic behavior of acoustic wave propagation (Hughes et al. 2007). Also the Biot model has been modified to include the acoustic anisotropy of cancellous bone by introducing empirical angle-dependent parameters, and used to predict both the fast and slow wave velocities as a function of propagation angle with respect to the trabecular alignment of cancellous bone (Lee et al. 2007).
Most recently, Aygün et al. (2009) have extended previous work on the influence of anisotropic pore structure and elasticity in cancellous bone by developing an anisotropic Biot–Allard model, allowing for angle-dependent elasticity and angle-and-porosity dependent tortuosity. The extreme angle dependence of tortuosity corresponding to the parallel plate microstructure used by Hughes et al. (2007) has been replaced by angle-and-porosity dependent tortuosity values based on data for slow wave transmission through air-filled stereo-lithography (STL) bone replicas (Attenborough et al. 2005). It has been suggested that the anisotropic Biot–Allard model could be used to give further insight into the factors that have the most important influence on the angle dependence of wave speeds and attenuation in cancellous bone.

This paper reports measurements of ultrasonic transmission made through water-saturated bone replicas at 100 kHz and 1 MHz. The resulting data are compared with predictions of a modified Biot–Allard model with anisotropic angle-and-porosity dependent tortuosity and angle-dependent elasticity. First we summarize the theory. Second we present the development of STL bone replicas. Then we present the measurements and default parameters used for the predictions and, finally, we compare data and predictions.

II. THEORY

A porous sample of length L is subjected to an ultrasonic wave in fluid (water) P^f. Part of ultrasonic wave is reflected back into the fluid P^f, while other part is transmitted through the sample P^t. Fellah et al. (2004) presented an analytical model based on the Biot’s theory modified by Johnson et al. (1987) model to describe the viscous interaction between fluid and a porous elastic structure. The Fourier transform of the transmitted field is given by Fellah et al. (2004) as

$$P_x(x,\omega) = T(\omega)\exp\left(-j\omega\left(x - \frac{L}{c_0}\right)\right)\varphi(\omega), \quad x \geq L,$$

(1)

where $\varphi(\omega)$ is the Fourier transform of the incident field ($P^i(t)$), $T(\omega)$ is the Fourier transform of the transmission kernel, ω is the angular frequency of motion, c_0 is the speed of sound in fluid, and L is the thickness of the material. A more detailed consideration of the transformed field can be found in the paper of Fellah et al. (2004). The transmission coefficient $T(\omega)$ is given by

$$T(\omega) = \frac{j\omega p_{cG} c_0 F_2(\omega)}{[j\omega p_{cG} F_2(\omega)]^2 - [j\omega F_3(\omega) - 1]^2},$$

(2)

where $F_2(\omega)$ and $F_3(\omega)$ are given in the Appendix.

The parallel orientation of the trabeculae in cancellous bone means that cancellous bone has transverse anisotropy. Such inherent anisotropy means that the acoustical properties vary with transmission direction (Attenborough et al. 2005). Aygün et al. (2009) introduced such anisotropy into Biot–Allard model by allowing angle-and-porosity dependent tortuosity and angle-dependent elasticity. A heuristic form for porosity- and angle-dependent tortuosity is proposed by Aygün et al. (2009) as

$$\alpha_c = 1 - r\left(1 - \frac{1}{\phi}\right) + k\cos^2(\theta),$$

(3)

where ϕ is the porosity, θ is the variable between 0° and 90°, and r and k can be considered adjustable. A range of possible values of r and k have been found by comparing predictions of Eq. (3) for $\theta=0^\circ$ and 90°, respectively with values deduced from air-filled replica bones (Attenborough et al., 2005) of known porosity. Values of r and k are found by solving the resulting simultaneous equations.

To predict transmission through an anisotropic poroelastic sample it is necessary to allow for elastic anisotropy also. Williams (1992) suggested that the dependence of skeletal frame modulus (Young’s modulus E_p, bulk Modulus K_p, and rigidity modulus μ_b) in terms of bone volume fraction $(1 - \phi)$ and the Young’s modulus of the solid material of the frame (E_s) are given by $E_b = E_s(1 - \phi)^n$, $K_b = E_s/(1 - 2\nu_b)$, and $\mu_b = E_s/(1 + 2\nu_b)$, respectively, where ν_b is the Poisson’s ratio of frame and the exponent n varies from 1 to 3 according to Gibson (1985), depending on the angle (θ) with respect to the dominant structural orientation according to $n = n_1 \sin^2(\theta) + n_2 \cos^2(\theta)$. Values of $n_1 = 1.23$ and $n_2 = 2.35$ are chosen by Lee et al. (2007) to be consistent with the work of Williams (1992). The Biot–Allard model for waves in fluid-saturated poro-elastic media (Allard, 1993) allows for thermal exchange and viscous drag between pore-fluid and the solid framework. Thermal exchange effects between solid and fluid can be included through a frequency-dependent bulk modulus of the fluid. However, whereas thermal effects are fairly important in air-filled porous materials, they are expected to be of minor importance in the water-filled bone replicas.

III. DEVELOPMENT OF STL BONE REPLICA

Several authors such as Strelitzki et al. (1997), Wear (2005), and Lee and Choi (2007) investigated the phase velocities and attenuation in cancellous-bone-mimicking phantoms. Stereo-lithographical bone replicas made of resin have been developed (Langton et al., 1997). STL is a form of rapid prototyping that allows complex solid objects to be manufactured directly from three dimensional (3D) computer models in the form of successive layers of light-cured resin. There are two stages to stereo-lithography: design and manufacturing. During the design stage the required object is initially created using standard 3D solid modeling techniques and then converted into the stereo-lithography format consisting of a series of thin slices. The stereo-lithography manufacturing system consists of a vat of light-sensitive resin with an elevator and computer-controlled scanning laser. At the start of the process, the elevator is positioned just below the surface (typically 0.1 mm) of the liquid stereo-lithography resin. The laser scanner “prints” the bottom layer onto the resin surface, which solidifies upon exposure to the laser beam. The elevator then moves down by an incremental distance, and the stereo-lithography resin is respread over the surface of the vat prior to the next scan. As successive solid layers are formed, they bond to produce a single solid object. When the model is completed the elevator is raised, and the unused resin is allowed to drain. The laser cures the stereo-
lithography resin to approximately 60%. The curing process is completed in an ultraviolet oven. The resolution of the stereo-lithography process is governed by the laser spot size and the vertical movement of the elevator. Typically, the laser spot diameter will be better than 0.3 mm, and the elevator movement resolution will be about 2.5 μm. Further details of stereo-lithography technique can be found elsewhere (Langton et al. 1997). The views of four stereo-lithographical bone replicas are shown in Fig. 1.

The primary reason for creating stereo-lithography replicas is that multiple copies may be created. This is particularly valuable for mechanical testing, where measurement in one direction may damage a sample and preclude testing in other orthogonal directions. The models were created at a magnification of ×13 to ensure spatial fidelity between the voxel size of the microCT scan of the original natural tissue samples and the minimum wall thickness achievable with STL. Bone “corrosion” due to osteoporosis can be simulated physically by corresponding stereo-lithographical bone replicas. Therefore bone replicas should enable studies of the acoustical effects of changes in microstructure. Since the STL bone replicas used in measurements have 13 times the actual size of the bone microstructure, spatial matching between sample microstructure and ultrasound wavelengths could be achieved by lowering the frequency. Hence 1 MHz should be reduced to approximately 100 kHz. To simulate the 200–600 kHz measurements used in BUA, it would be necessary to use between 15.4 and 46.2 kHz.

IV. MEASUREMENTS

The experimental procedure used by Fellah et al. (2004) has been followed to perform measurements in a water tank (see Fig. 2). Two broadband Panametrics A 303S plane piezoelectric transducers having 1 cm diameter with 1 MHz central frequency, and two Panametrics V3052 transducers having 44 mm diameter with 100 kHz central frequency have been used for experiments. 400 V pulses are provided by a 5058PR Panametrics pulser/receiver. Electronic interference is removed by 1000 acquisition averages.

When a wave impinges on a STL bone replica, part of the wave is reflected back. The part of the wave penetrating...
into the sample undergoes mode conversion into fast and slow components, which are transmitted through the STL bone replica. The measurements have been made parallel to the trabecular alignment (x direction). The incident (reference) signals generated by 100 kHz and 1 MHz transducers and transmitted through fluid (water) are shown in Figs. 3(a) and 4(a), and their spectra are shown in Figs. 3(b) and 4(b), respectively. Predicted transmission coefficients in frequency domain for lumbar spine (LS2B) at 100 kHz and 1 MHz are shown in Fig. 5.

V. COMPARISONS BETWEEN DATA AND PREDICTIONS

The parameters used in the predictions are listed in Table I. The elastic moduli of the STL bone replicas made of resin have been taken to be equal to the elastic modulus of resin which is 6.04 GPa (DSM Somos) and is smaller than the elastic modulus of real bone, which is 20 GPa (Williams 1992). Assuming that the permeability of the bone is $5 \times 10^{-9}\text{ m}^3$ (McKelvie and Palmer 1991), the permeability of bone replicas has been taken to be 13^2 times higher because of the magnification of the actual size of the bone microstructure by 13 times in each direction. The assumed characteristics of the saturating fluid (water) are: density $\rho_f = 1000\text{ kg/m}^3$, viscosity $\eta = 10^{-3}\text{ kg ms}^{-1}$, and speed of sound in water $c_0 = 1490\text{ m/s}$.

Measured and predicted transmitted signals are traveling through the bone replicas in the same direction as the trabecular alignment (x direction). The incident signal shown in Fig. 3 has been used for predictions. Predicted transmitted waves of STL iliac crest (ICF), femoral head (FRA), and LS2B replicas versus time are compared with measured transmitted waves in water at 100 kHz in Figs. 6–8, respectively. In Fig. 6 the initial parts of the measured and predicted transmitted waveforms can be identified as the fast wave arrival, while the second and major parts of the transmitted waveforms can be identified as the slow wave contribution. Although two compressional wave arrivals can be observed in both data and predictions in Fig. 6, they can be observed only in the predictions in Fig. 7, and in the data in Fig. 8. While the agreement between the overall structure of the waveform data and predictions is reasonable, the magnitude of the leading negative spike is consistently overestimated by the predictions, and the trailing parts of the pulses are not predicted very accurately. The root mean square errors between predictions and data have been calculated. The error for FRA, ICF, and LS2B bone replicas are 0.021, 0.01, and 0.016 V at 100 kHz, respectively.

Predicted transmitted waveforms through water-filled STL FRA, ICF, LS2B, and CAB replicas are compared with measured transmitted waves in water at 1 MHz in Figs. 9–12, respectively. Although the predicted and measured transmitted waveforms are similar, there are significant differences between the predicted and measured transmitted

Table I. Default input parameters for STL bone replicas.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Iliac crest</th>
<th>Femoral head</th>
<th>Lumbar spine LS2</th>
<th>Calcaneus CAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of replica ρ_f (Attenborough et al., 2005)</td>
<td>1233.4 kg/m3</td>
<td>1227 kg/m3</td>
<td>1206.6 kg/m3</td>
<td>1171 kg/m3</td>
</tr>
<tr>
<td>Young’s modulus E_s (DSM Somos)</td>
<td>6.04 GPa</td>
<td>6.04 GPa</td>
<td>6.04 GPa</td>
<td>6.04 GPa</td>
</tr>
<tr>
<td>Poisson’s ratio of solid ν_s</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Poisson’s ratio of frame ν_f</td>
<td>0.36</td>
<td>0.40</td>
<td>0.38</td>
<td>0.34</td>
</tr>
<tr>
<td>Porosity ϕ (Attenborough et al., 2005)</td>
<td>0.8386</td>
<td>0.7426</td>
<td>0.9173</td>
<td>0.8822</td>
</tr>
<tr>
<td>Permeability k_p</td>
<td>$845 \times 10^{-9}\text{ m}^3$</td>
<td>$845 \times 10^{-9}\text{ m}^3$</td>
<td>$845 \times 10^{-9}\text{ m}^3$</td>
<td>$845 \times 10^{-9}\text{ m}^3$</td>
</tr>
<tr>
<td>Viscous characteristic length Λ</td>
<td>100 μm</td>
<td>60 μm</td>
<td>220 μm</td>
<td>150 μm</td>
</tr>
<tr>
<td>r (Aygün et al., 2009)</td>
<td>0.888</td>
<td>0.591</td>
<td>0.521</td>
<td>0.816</td>
</tr>
<tr>
<td>k (Eq. (3))</td>
<td>0.468</td>
<td>0.684</td>
<td>0.143</td>
<td>0.574</td>
</tr>
</tbody>
</table>
amplitudes at 1 MHz. The root mean square error between predictions and data for CAB, FRA, ICF, and LS2B bone replicas are 0.00188, 0.0031, 0.0049, and 0.0055 V at 1 MHz, respectively. The measured amplitudes of transmitted waveforms through the femoral head and iliac crest replicas are larger than the predicted ones, while those measured through the lumbar spine and calcaneus replicas are smaller than the predicted ones. In the latter two cases, the fact that the measured amplitudes are smaller than predicted could be attributed to the effects of scattering, which should give rise to additional attenuation. This interpretation is not consistent with the cases where the measured transmitted amplitudes are larger than the predicted ones. The lack of consistency in the agreement between predictions and data might be related to the assumption that the permeabilities of the replicas are all the same, whereas the known differences in porosity should be reflected in differences in permeability. Moreover, scattering can be expected to be more important when the typical dimensions of the frame and pore microstructure are larger. In this respect it is interesting to note that the lumbar spine and calcaneus bone replicas have higher fitted viscous characteristic lengths than the femoral head and iliac crest bone replicas. Porosity and density of STL bone replicas are given by Attenborough et al. (2005). The values of \(r \) for all STL bone replicas are given by Aygün et al. (2009). Only two parameters, Poisson’s ratio of frame and viscous characteristic length, were adjusted in order to obtain the “best-fit.” In particular, the predictions are very sensitive to the assumed values of viscous characteristic length. The “best-fit” characteristic length values (Table I) for the replicas are about 13 times those found for real bone in the literature i.e., between 5 and 10 \(\mu m \) (Fellah et al., 2004; Sebaa et al., 2006).

VI. DISCUSSION AND CONCLUSION

The use of stereo-lithograpical bone replicas made from resin has the potential to enable systematic investigations of the influences of perforation and thinning in cancellous bone on the acoustical and mechanical properties of the bone structure. Waves transmitted through STL bone replicas with higher porosity values have higher amplitudes. Osteoporotic
bones will have higher porosity values due to bone loss, so greater energy will be transmitted through them in comparison with normal bone.

A consequence of using replica bones, which are 13 times the actual size of the bone microstructure, is that scattering should become important at lower frequencies than in measurements with real bone samples. Transmitted signals for water-saturated stereo-lithographical bone replicas have been predicted by modified anisotropic Biot–Allard model, which neglects scattering, and the results have been compared to measurements made in a water-filled tank at 100 kHz and 1 MHz. The wavelengths of the slow and fast waves in water-saturated STL bone replicas at 100 kHz are 15 and 30 mm, respectively. These wavelengths are comparable with the dimensions of microstructural elements of STL bone replicas. According to Williams (1992), the pore sizes in cancellous bone vary between 0.5 and 1 mm, so typical trabeculae widths in the replicas vary between 6.5 and 13 mm. Remarkably, scattering seems not to cause significant discrepancies between predictions and data at 100 kHz (which would be equivalent to 1.3 MHz in real bone), perhaps as a consequence of the fact that the samples behave as low pass filters. Scattering should be even more important at 1 MHz (equivalent to 13 MHz in real bone), where the fast and slow wavelengths are 3 and 1.5 mm, respectively. So the agreement between predictions and data is rather surprising.

These data and predictions support further use of Biot-based theories and of STL replicas for studying ultrasonic transmission through bone.

ACKNOWLEDGMENT

This paper has been supported by Leverhulme Grant No. F/00 181/N, which provided for collaboration with the Laboratory of Acoustics and Thermal Physics at Leuven where the data reported here were obtained.

APPENDIX: BASIS FOR THE PREDICTION OF THE TRANSMISSION COEFFICIENT

The transmission coefficient $T(\omega)$ is given by Fellah et al. (2004)

$$T(\omega) = \frac{j \omega 2 \rho c_0 F_4(\omega)}{[j \omega 2 \rho c_0 F_2(\omega)]^2 - [j \omega F_3(\omega) - 1]^2},$$

where

$$F_i(\omega) = \{1 + \phi_1[\lambda_i(\omega) - 1]\} x \sqrt{\lambda_i(\omega)}$$

$$\times \frac{\Psi_i(\omega)}{\sinh(\sqrt{\lambda_i(\omega)}) \Psi(\omega)}, \quad i = 1, 2,$$

$$F_3(\omega) = \rho c_0 [F_1(\omega) \cosh(\sqrt{\lambda_1(\omega)}) + F_2(\omega) \cosh(\sqrt{\lambda_2(\omega)})],$$

$$F_4(\omega) = F_1(\omega) + F_2(\omega).$$

The eigenvalues $\lambda_1(\omega)$ and $\lambda_2(\omega)$ are the squared complex wave numbers of the two compressional waves and are given by

$$\lambda_1(\omega) = \frac{1}{2} [-\tau_1 \omega^2 + \tau_2(j \omega)^{3/2} - \sqrt{\tau_1^2 - 4 \tau_2 \omega^4 + 2(\tau_1 \tau_2 - 2 \tau_4)(j \omega)^{7/2} + \tau_4^2(j \omega)^2}],$$

$$\lambda_2(\omega) = \frac{1}{2} [-\tau_1 \omega^2 + \tau_2(j \omega)^{3/2} + \sqrt{\tau_1^2 - 4 \tau_2 \omega^4 + 2(\tau_1 \tau_2 - 2 \tau_4)(j \omega)^{7/2} + \tau_4^2(j \omega)^2}],$$

where

$$\tau_1 = R' \rho_{11} + P' \rho_{22} - 2 Q' \rho_{12},$$

$$\tau_2 = 2(R' + P' + 2 Q'),$$

$$\tau_3 = (R' P' - Q'^2)(\rho_{11} \rho_{22} - \rho_{12}^2),$$

and

$$\tau_4 = A(R' P' - Q'^2)(\rho_{11} + \rho_{22} - 2 \rho_{12}).$$

Coefficients R', P', and Q' are given by

![Figure 11](image1.png)

FIG. 11. (Color online) Comparison of predicted and measured transmitted waveforms through a water-saturated LS2B bone replica at 1 MHz.

![Figure 12](image2.png)

FIG. 12. (Color online) Comparison of predicted and measured transmitted waveforms through a water-saturated CAB bone replica at 1 MHz.
\[R' = \frac{R}{PR - Q'^2}, \]
\[Q' = \frac{Q}{PR - Q'^2}, \]

and

\[P' = \frac{P}{PR - Q'^2}, \]

where \(P, R, \) and \(Q \) are generalized elastic constants.

The eigenvectors \(\mathcal{J}_1(\omega) \) and \(\mathcal{J}_2(\omega) \) are given by

\[
\mathcal{J}_1(\omega) = \frac{(2\tau_5 - \tau_1)\omega^2 + (\tau_2 - 2\tau_6)(j\omega)^{3/2} - \sqrt{(\tau_2^2 - 4\tau_1)\omega^4 + 2(\tau_1\tau_2 - 2\tau_6)(j\omega)^{3/2} + \tau_2^2(j\omega)^3}}{2[-\tau_7\omega^2 - \tau_6(j\omega)^{3/2}]},
\]

\[
\mathcal{J}_2(\omega) = \frac{(2\tau_5 - \tau_1)\omega^2 + (\tau_2 - 2\tau_6)(j\omega)^{3/2} + \sqrt{(\tau_2^2 - 4\tau_1)\omega^4 + 2(\tau_1\tau_2 - 2\tau_6)(j\omega)^{3/2} + \tau_2^2(j\omega)^3}}{2[-\tau_7\omega^2 - \tau_6(j\omega)^{3/2}]},
\]

where

\[
\tau_5 = (R'\rho_{11} - Q'\rho_{12}),
\]

\[
\tau_6 = A(R' + Q'),
\]

\[
\tau_7 = (R'\rho_{12} - Q'\rho_{22}).
\]

The coefficients \(\Psi_1(\omega) \), \(\Psi_2(\omega) \), and \(\Psi(\omega) \) are given by

\[
\Psi_1(\omega) = \phi Z_2(\omega) - (1 - \phi)Z_4(\omega),
\]

\[
\Psi_2(\omega) = (1 - \phi)Z_3(\omega) - \phi Z_4(\omega),
\]

\[
\Psi(\omega) = 2[Z_1(\omega)Z_4(\omega) - Z_2(\omega)Z_3(\omega)],
\]

and the coefficients \(Z_1(\omega), Z_2(\omega), Z_3(\omega) \), and \(Z_4(\omega) \) by

\[
Z_1(\omega) = [P + Q\mathcal{J}_1(\omega)]\lambda_1(\omega),
\]

\[
Z_2(\omega) = [P + Q\mathcal{J}_2(\omega)]\lambda_2(\omega),
\]

\[
Z_3(\omega) = [Q + R\mathcal{J}_1(\omega)]\lambda_1(\omega),
\]

\[
Z_4(\omega) = [Q + R\mathcal{J}_2(\omega)]\lambda_2(\omega).
\]

Aygün et al.: Ultrasonic wave propagation in bone replicas...